17.2.386. MPI_Type_create_hindexed

MPI_Type_create_hindexed — Creates an indexed datatype with offsets in bytes.

17.2.386.1. SYNTAX

17.2.386.1.1. C Syntax

#include <mpi.h>

int MPI_Type_create_hindexed(int count, int *array_of_blocklengths,
     MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
     MPI_Datatype *newtype)

17.2.386.1.2. Fortran Syntax

USE MPI
! or the older form: INCLUDE 'mpif.h'

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
          ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
    INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*)
    INTEGER ARRAY_OF_DISPLACEMENTS(*), OLDTYPE, NEWTYPE
    INTEGER IERROR

17.2.386.2. INPUT PARAMETERS

  • count: Number of blocks — also number of entries in array_of_displacements and array_of_blocklengths (integer).

  • array_of_blocklengths: Number of elements in each block (array of nonnegative integers).

  • array_of_displacements: Byte displacement of each block (C: array of MPI_Aint, Fortran: array of integer).

  • oldtype: Old datatype (handle).

17.2.386.3. OUTPUT PARAMETERS

  • newtype: New datatype (handle).

  • ierror: Fortran only: Error status (integer).

17.2.386.4. DESCRIPTION

The function is identical to MPI_Type_indexed, except that block displacements in array_of_displacements are specified in bytes, rather than in multiples of the oldtype extent.

Assume that oldtype has type map

{(type(0), disp(0)), ..., (type(n-1), disp(n-1))},

with extent ex. Let B be the array_of_blocklength argument and D be the array_of_displacements argument. The newly created datatype has

n x S^count-1
    (i=0)        B[i]  entries:

  {(type(0), disp(0) + D[0]),...,(type(n-1), disp(n-1) + D[0]),...,
  (type(0), disp(0) + (D[0] + B[0]-1)* ex),...,
  type(n-1), disp(n-1) + (D[0]+ B[0]-1)* ex),...,
  (type(0), disp(0) + D[count-1]),...,(type(n-1), disp(n-1) + D[count-1]),...,
  (type(0), disp(0) +  D[count-1] + (B[count-1] -1)* ex),...,
  (type(n-1), disp(n-1) + D[count-1] + (B[count-1] -1)* ex)}

17.2.386.5. ERRORS

Almost all MPI routines return an error value; C routines as the return result of the function and Fortran routines in the last argument.

Before the error value is returned, the current MPI error handler associated with the communication object (e.g., communicator, window, file) is called. If no communication object is associated with the MPI call, then the call is considered attached to MPI_COMM_SELF and will call the associated MPI error handler. When MPI_COMM_SELF is not initialized (i.e., before MPI_Init/MPI_Init_thread, after MPI_Finalize, or when using the Sessions Model exclusively) the error raises the initial error handler. The initial error handler can be changed by calling MPI_Comm_set_errhandler on MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI argument to mpiexec or info key to MPI_Comm_spawn/MPI_Comm_spawn_multiple. If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all other MPI functions.

Open MPI includes three predefined error handlers that can be used:

  • MPI_ERRORS_ARE_FATAL Causes the program to abort all connected MPI processes.

  • MPI_ERRORS_ABORT An error handler that can be invoked on a communicator, window, file, or session. When called on a communicator, it acts as if MPI_Abort was called on that communicator. If called on a window or file, acts as if MPI_Abort was called on a communicator containing the group of processes in the corresponding window or file. If called on a session, aborts only the local process.

  • MPI_ERRORS_RETURN Returns an error code to the application.

MPI applications can also implement their own error handlers by calling:

Note that MPI does not guarantee that an MPI program can continue past an error.

See the MPI man page for a full list of MPI error codes.

See the Error Handling section of the MPI-3.1 standard for more information.